Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.020
Filtrar
1.
Sci Rep ; 14(1): 10131, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698085

RESUMO

Fusarium head blight (FHB) is a significantly important disease in cereals primarily caused by Fusarium species. FHB control is largely executed through chemical strategies, which are costlier to sustainable wheat production, resulting in leaning towards sustainable sources such as resistance breeding and biological control methods for FHB. The present investigation was aimed at evaluating newly identified bacterial consortium (BCM) as biocontrol agents for FHB and understanding the morpho-physiological traits associated with the disease resistance of spring wheat. Preliminary evaluation through antagonistic plate assay and in vivo assessment indicated that BCM effectively inhibited Fusarium growth in spring wheat, reducing area under disease progress curve (AUDPC) and deoxynivalenol (DON), potentially causing type II and V resistance, and improving single spike yield (SSPY). Endurance to FHB infection with the application of BCM is associated with better sustenance of spike photosynthetic performance by improving the light energy harvesting and its utilization. Correlation and path-coefficient analysis indicated that maximum quantum yield (QY_max) is directly influencing the improvement of SSPY and reduction of grain DON accumulation, which is corroborated by principal component analysis. The chlorophyll fluorescence traits identified in the present investigation might be applied as a phenotyping tool for the large-scale identification of wheat sensitivity to FHB.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Triticum , Triticum/microbiologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Consórcios Microbianos/fisiologia , Tricotecenos/metabolismo , Fotossíntese , Bactérias/metabolismo , Bactérias/genética
2.
Genes (Basel) ; 15(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674409

RESUMO

The wheat head blight disease caused by Fusarium graminearum is a major concern for food security and the health of both humans and animals. As a pathogenic microorganism, F. graminearum produces virulence factors during infection to increase pathogenicity, including various macromolecular and small molecular compounds. Among these virulence factors, secreted proteins and deoxynivalenol (DON) are important weapons for the expansion and colonization of F. graminearum. Besides the presence of virulence factors, sexual reproduction is also crucial for the infection process of F. graminearum and is indispensable for the emergence and spread of wheat head blight. Over the last ten years, there have been notable breakthroughs in researching the virulence factors and sexual reproduction of F. graminearum. This review aims to analyze the research progress of sexual reproduction, secreted proteins, and DON of F. graminearum, emphasizing the regulation of sexual reproduction and DON synthesis. We also discuss the application of new gene engineering technologies in the prevention and control of wheat head blight.


Assuntos
Fusarium , Doenças das Plantas , Tricotecenos , Triticum , Fusarium/genética , Fusarium/patogenicidade , Fusarium/metabolismo , Tricotecenos/metabolismo , Triticum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Fatores de Virulência/genética , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virulência/genética , Reprodução/genética
3.
J Hazard Mater ; 471: 134319, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657511

RESUMO

Deoxynivalenol (DON), a widespread mycotoxin, represents a substantial public health hazard due to its propensity to contaminate agricultural produce, leading to both acute and chronic health issues in humans and animals upon consumption. The role of ferroptosis in DON-induced hepatic damage remains largely unexplored. This study investigates the impact of 18ß-glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza, on DON hepatotoxicity and elucidates the underlying mechanisms. Our results indicate that GA effectively attenuates liver injury inflicted by DON. This was achieved by inhibiting nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, as well as by adjusting mitochondrial quality control (MQC). Specifically, GA curtails ferritinophagy by diminishing NCOA4 expression without affecting the autophagic flux. At a molecular level, GA binds to and stabilizes programmed cell death protein 4 (PDCD4), thereby inhibiting its ubiquitination and subsequent degradation. This stabilization of PDCD4 leads to the downregulation of NCOA4 via the JNK-Jun-NCOA4 axis. Knockdown of PDCD4 weakened GA's protective action against DON exposure. Furthermore, GA improved mitochondrial function and limited excessive mitophagy and mitochondrial division induced by DON. Disrupting GA's modulation of MQC nullified its anti-ferroptosis effects. Overall, GA offers protection against DON-induced ferroptosis by blocking ferritinophagy and managing MQC. ENVIRONMENTAL IMPLICATION: Food contamination from mycotoxins, is a problem for agricultural and food industries worldwide. Deoxynivalenol (DON), the most common mycotoxins in cereal commodities. A survey in 2023 showed that the positivity rate for DON contamination in food reached more than 70% globally. DON can damage the health of humans whether exposed to high doses for short periods of time or low doses for long periods of time. We have discovered 18ß-Glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza. Liver damage caused by low-dose DON can be successfully treated with GA. This study will support the means of DON control, including antidotes.


Assuntos
Autofagia , Doença Hepática Induzida por Substâncias e Drogas , Ácido Glicirretínico , Tricotecenos , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/análogos & derivados , Animais , Tricotecenos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Humanos , Autofagia/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Ferritinas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Substâncias Protetoras/farmacologia , Coativadores de Receptor Nuclear/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos , Camundongos Endogâmicos C57BL , Células Hep G2
4.
Toxins (Basel) ; 16(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668591

RESUMO

Trichothecenes produced by Fusarium species are commonly detected in oats. However, the ratios of the concentrations of free trichothecenes and their conjugates and how they are impacted by different interacting environmental conditions are not well documented. This study aims to examine the effect of water activity (0.95 and 0.98 aw) and temperature (20 and 25 °C) stress on the production of T-2 and HT-2 toxins, deoxynivalenol and their conjugates, as well as diacetoxyscirpenol (DAS). Multiple mycotoxins were detected using liquid chromatography-tandem mass spectrometry from 64 contaminated oat samples. The highest concentrations of HT-2-glucoside (HT-2-Glc) were observed at 0.98 aw and 20 °C, and were higher than other type A trichothecenes in the natural oats' treatments. However, no statistical differences were found between the mean concentrations of HT-2-Glc and HT-2 toxins in all storage conditions analysed. DAS concentrations were generally low and highest at 0.95 aw and 20 °C, while deoxynivalenol-3-glucoside levels were highest at 0.98 aw and 20 °C in the naturally contaminated oats. Emerging mycotoxins such as beauvericin, moniliformin, and enniatins mostly increased with a rise in water activity and temperature in the naturally contaminated oats treatment. This study reinforces the importance of storage aw and temperature conditions in the high risk of free and modified toxin contamination of small cereal grains.


Assuntos
Avena , Contaminação de Alimentos , Fusarium , Glucosídeos , Toxina T-2/análogos & derivados , Tricotecenos , Fusarium/metabolismo , Avena/microbiologia , Avena/química , Tricotecenos/análise , Glucosídeos/análise , Contaminação de Alimentos/análise , Temperatura , Micotoxinas/análise , Toxina T-2/análise
5.
Toxins (Basel) ; 16(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38668592

RESUMO

Broiler chickens in livestock production face numerous challenges that can impact their health and welfare, including mycotoxin contamination and heat stress. In this study, we aimed to investigate the combined effects of two mycotoxins, deoxynivalenol (DON) and fumonisins (FBs), along with short-term heat stress conditions, on broiler gut health and endotoxin translocation. An experiment was conducted to assess the impacts of mycotoxin exposure on broilers, focusing on intestinal endotoxin activity, gene expression related to gut barrier function and inflammation, and the plasma concentration of the endotoxin marker 3-OH C14:0 either at thermoneutral conditions or short-term heat stress conditions. Independently of heat stress, broilers fed DON-contaminated diets exhibited reduced body weight gain during the starter phase (Day 1-12) compared to the control group, while broilers fed FB-contaminated diets experienced decreased body weight gain throughout the entire trial period (Day 1-24). Furthermore, under thermoneutral conditions, broilers fed DON-contaminated diets showed an increase in 3-OH C14:0 concentration in the plasma. Moreover, under heat stress conditions, the expression of genes related to gut barrier function (Claudin 5, Zonulin 1 and 2) and inflammation (Toll-like receptor 4, Interleukin-1 beta, Interleukin-6) was significantly affected by diets contaminated with mycotoxins, depending on the gut segment. This effect was particularly prominent in broilers fed diets contaminated with FBs. Notably, the plasma concentration of 3-OH C14:0 increased in broilers exposed to both DON- and FB-contaminated diets under heat stress conditions. These findings shed light on the intricate interactions between mycotoxins, heat stress, gut health, and endotoxin translocation in broiler chickens, highlighting the importance of understanding these interactions for the development of effective management strategies in livestock production to enhance broiler health and welfare.


Assuntos
Ração Animal , Galinhas , Endotoxinas , Contaminação de Alimentos , Fusarium , Tricotecenos , Animais , Galinhas/microbiologia , Endotoxinas/sangue , Tricotecenos/toxicidade , Fumonisinas/toxicidade , Masculino , Dieta/veterinária , Resposta ao Choque Térmico/efeitos dos fármacos , Micotoxinas/toxicidade
6.
Antonie Van Leeuwenhoek ; 117(1): 73, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676821

RESUMO

The deoxynivalenol (DON)-degrading bacterium JB1-3-2 T was isolated from a rhizosphere soil sample of cucumber collected from a greenhouse located in Zhenjiang, Eastern China. The JB1-3-2 T strain is a Gram-stain-positive, nonmotile and round actinomycete. Growth was observed at temperatures between 15 and 40 ℃ (optimum, 35 ℃), in the presence of 15% (w/v) NaCl (optimum, 3%), and at pH 3 and 11 (optimum, 7). The major cellular fatty acids identified were anteiso-C15:0, iso-C16:0 and anteiso-C17:0. Genome sequencing revealed a genome size of 4.11 Mb and a DNA G + C content of 72.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the JB1-3-2 T strain was most closely related to type strains of the Oerskovia species, with the highest sequence similarity to Oerskovia turbata NRRL B-8019 T (98.2%), and shared 98.1% sequence identity with other valid type strains of this genus. Digital DNA‒DNA hybridization (dDDH) and average nucleotide identity (ANI) showed 21.8-22.2% and 77.2-77.3% relatedness, respectively, between JB1-3-2 T and type strains of the genus Oerskovia. Based on genotypic, phylogenetic, chemotaxonomic, physiological and biochemical characterization, Oerskovia flava, a novel species in the genus Oerskovia, was proposed, and the type strain was JB1-3-2 T (= CGMCC 1.18555 T = JCM 35248 T). Additionally, this novel strain has a DON degradation ability that other species in the genus Oerskovia do not possess, and glutathione-S-transferase was speculated to be the key enzyme for strain JB1-3-2 T to degrade DON.


Assuntos
Cucumis sativus , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Rizosfera , Microbiologia do Solo , Tricotecenos , Cucumis sativus/microbiologia , Tricotecenos/metabolismo , RNA Ribossômico 16S/genética , Ácidos Graxos/metabolismo , DNA Bacteriano/genética , China , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Genoma Bacteriano
7.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673874

RESUMO

The trichothecene biosynthesis in Fusarium begins with the cyclization of farnesyl pyrophosphate to trichodiene, followed by subsequent oxygenation to isotrichotriol. This initial bicyclic intermediate is further cyclized to isotrichodermol (ITDmol), a tricyclic precursor with a toxic trichothecene skeleton. Although the first cyclization and subsequent oxygenation are catalyzed by enzymes encoded by Tri5 and Tri4, the second cyclization occurs non-enzymatically. Following ITDmol formation, the enzymes encoded by Tri101, Tri11, Tri3, and Tri1 catalyze 3-O-acetylation, 15-hydroxylation, 15-O-acetylation, and A-ring oxygenation, respectively. In this study, we extensively analyzed the metabolites of the corresponding pathway-blocked mutants of Fusarium graminearum. The disruption of these Tri genes, except Tri3, led to the accumulation of tricyclic trichothecenes as the main products: ITDmol due to Tri101 disruption; a mixture of isotrichodermin (ITD), 7-hydroxyisotrichodermin (7-HIT), and 8-hydroxyisotrichodermin (8-HIT) due to Tri11 disruption; and a mixture of calonectrin and 3-deacetylcalonectrin due to Tri1 disruption. However, the ΔFgtri3 mutant accumulated substantial amounts of bicyclic metabolites, isotrichotriol and trichotriol, in addition to tricyclic 15-deacetylcalonectrin (15-deCAL). The ΔFgtri5ΔFgtri3 double gene disruptant transformed ITD into 7-HIT, 8-HIT, and 15-deCAL. The deletion of FgTri3 and overexpression of Tri6 and Tri10 trichothecene regulatory genes did not result in the accumulation of 15-deCAL in the transgenic strain. Thus, the absence of Tri3p and/or the presence of a small amount of 15-deCAL adversely affected the non-enzymatic second cyclization and C-15 hydroxylation steps.


Assuntos
Fusarium , Tricotecenos , Fusarium/metabolismo , Fusarium/genética , Ciclização , Tricotecenos/metabolismo , Acetilação , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Fosfatos de Poli-Isoprenil/metabolismo , Vias Biossintéticas
8.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38613476

RESUMO

This study evaluated the effect of dietary calcium (Ca) levels and deoxynivalenol (DON) contamination on Ca and phosphorus (P) utilization and bone mineralization in piglets. During an initial 13-d depletion phase, 64 piglets (15.7 ±â€…0.7 kg) received a control (DON-) or DON-contaminated treatment (DON+, 2.7 mg DON/kg) with either a low Ca (Ca-, 0.39%) or normal Ca level (Ca+, 0.65%) with a constant digestible P level (0.40%). A second group of 16 piglets received DON- or DON+ treatments for 9 d for gene expression analysis. During the subsequent 14-d repletion phase, all piglets were fed a Ca+ DON- diet containing 0.65% Ca and 0.35% digestible P without DON. After 5 d of the depletion phase, the absorption of P (DON × Ca; P < 0.05) and Ca was increased by the Ca- (P < 0.01) and DON+ (P < 0.01) diet. After 13 d, feed conversion ratio (P < 0.01) and average daily feed intake (P = 0.06) tended to decrease with the Ca- diet. The bone mineral content (BMC) gain was decreased by Ca, especially with Ca- DON + (DON × Ca, P < 0.05). The P absorption was increased by Ca- DON + (DON × Ca, P < 0.01), although the P retention efficiency was only increased by Ca+ DON + (DON × Ca, P < 0.001). The absorption of Ca was increased by DON+ (P < 0.001), and the Ca efficiency was increased by Ca- DON- (DON × Ca, P < 0.01). After 9 d, the gene expression of intestinal claudin 12 (P < 0.01) and CYP24A1 (P < 0.05), femur cortical RANKL (P < 0.05) and OPG (P = 0.06), and renal calbindin D9K (P < 0.05) and Klotho (P = 0.07) were decreased by DON+. The Ca (P = 0.06) and magnesium (P < 0.01) concentrations were decreased by DON+, and the Ca (P = 0.06) and P digestibility (P < 0.01) were increased. After the repletion phase, Ca- piglets recovered their BMC deficit, but not those receiving DON+ (DON × Ca; P = 0.06). The Ca (P < 0.05) and P (P = 0.06) retention efficiency tended to increase with Ca-. The absorption of Ca and P was increased by Ca- and DON+ (DON × Ca, P < 0.05). The results show that piglets increased their Ca and P utilization efficiency, allowing them to recover the BMC deficit caused by Ca-, but not when the piglets were exposed to DON. Pigs previously receiving Ca-deficient diet with DON still have lower body Ca and P, leading to elevated calcitriol concentrations and enhanced Ca and P intestinal absorption. The fact that DON decreased the expression of genes implicated in Ca intestinal and renal transport and P excretion after 9 d can potentially explain the reduced plasma Ca concentration.


Calcium (Ca) deficiency can increase how efficiently pigs use Ca and phosphorus (P), but exposure to the mycotoxin deoxynivalenol (DON), often found in pig feed ingredients, can impact the digestibility and excretion of Ca and P. In our study, piglets received a diet with or without DON-contamination and either low Ca (0.39%) or normal Ca levels (0.65%) during a 13-d depletion phase, followed by a 14-d repletion phase where all piglets were fed a normal Ca diet without DON. The short Ca-depletion phase is known to improve the utilization efficiency of Ca and P in piglets by increasing the retention of these nutrients through both depletion and repletion phases and the Ca and P digestibility through the repletion phase, which allows recovery of the bone mineralization deficit that occurred during Ca deficiency. However, the diet contaminated with DON prevented pigs from recovering from their bone mineralization deficit observed during the Ca-depletion phase, even though they were better able to absorb and digest Ca and P during both phases. This was supported by the reduced expression of genes involved in Ca intestinal absorption, renal transport, osteoclastogenesis, and P excretion.


Assuntos
Ração Animal , Cálcio da Dieta , Cálcio , Dieta , Tricotecenos , Animais , Tricotecenos/toxicidade , Ração Animal/análise , Suínos/fisiologia , Dieta/veterinária , Cálcio/metabolismo , Cálcio da Dieta/metabolismo , Cálcio da Dieta/farmacologia , Fenômenos Fisiológicos da Nutrição Animal , Fósforo/metabolismo , Masculino
9.
Sci Total Environ ; 928: 172494, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38631642

RESUMO

Environmental factors significantly impact grain mycobiome assembly and mycotoxin contamination. However, there is still a lack of understanding regarding the wheat mycobiome and the role of fungal communities in the interaction between environmental factors and mycotoxins. In this study, we collected wheat grain samples from 12 major wheat-producing provinces in China during both the harvest and storage periods. Our aim was to evaluate the mycobiomes in wheat samples with varying deoxynivalenol (DON) contamination levels and to confirm the correlation between environmental factors, the wheat mycobiome, and mycotoxins. The results revealed significant differences in the wheat mycobiome and co-occurrence network between contaminated and uncontaminated wheat samples. Fusarium was identified as the main differential taxon responsible for inducing DON contamination in wheat. Correlation analysis identified key factors affecting mycotoxin contamination. The results indicate that both environmental factors and the wheat mycobiome play significant roles in the production and accumulation of DON. Environmental factors can affect the wheat mycobiome assembly, and wheat mycobiome mediates the interaction between environmental factors and mycotoxin contamination. Furthermore, a random forest (RF) model was developed using key biological indicators and environmental features to predict DON contamination in wheat with accuracies exceeding 90 %. The findings provide data support for the accurate prediction of mycotoxin contamination and lay the foundation for the research on biological control technologies of mycotoxin through the assembly of synthetic microbial communities.


Assuntos
Micobioma , Micotoxinas , Triticum , Triticum/microbiologia , Micotoxinas/análise , Micotoxinas/metabolismo , China , Grão Comestível/microbiologia , Contaminação de Alimentos/análise , Tricotecenos/análise , Tricotecenos/metabolismo , Fusarium , Monitoramento Ambiental
10.
J Agric Food Chem ; 72(17): 9637-9646, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642053

RESUMO

Nucleoside diphosphate kinases (NDPKs) are nucleotide metabolism enzymes that play different physiological functions in different species. However, the roles of NDPK in phytopathogen and mycotoxin production are not well understood. In this study, we showed that Fusarium graminearum FgNdpk is important for vegetative growth, conidiation, sexual development, and pathogenicity. Furthermore, FgNdpk is required for deoxynivalenol (DON) production; deletion of FgNDPK downregulates the expression of DON biosynthesis genes and disrupts the formation of FgTri4-GFP-labeled toxisomes, while overexpression of FgNDPK significantly increases DON production. Interestingly, FgNdpk colocalizes with the DON biosynthesis proteins FgTri1 and FgTri4 in the toxisome, and coimmunoprecipitation (Co-IP) assays show that FgNdpk associates with FgTri1 and FgTri4 in vivo and regulates their localizations and expressions, respectively. Taken together, these data demonstrate that FgNdpk is important for vegetative growth, conidiation, and pathogenicity and acts as a key protein that regulates toxisome formation and DON biosynthesis in F. graminearum.


Assuntos
Proteínas Fúngicas , Fusarium , Núcleosídeo-Difosfato Quinase , Doenças das Plantas , Esporos Fúngicos , Tricotecenos , Fusarium/genética , Fusarium/enzimologia , Fusarium/metabolismo , Fusarium/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Tricotecenos/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/metabolismo , Regulação Fúngica da Expressão Gênica , Virulência , Triticum/microbiologia
11.
Food Res Int ; 184: 114275, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609252

RESUMO

Trichothecenes are Fusarium mycotoxins with sesquiterpenoid structure, which are widely occurred in grains. Due to high efficiency and environmental friendliness, biological detoxification methods have been of great interest to treat this global food and feed safety concern. This review summarized the biological detoxification methods of trichothecenes from three aspects, biosorption, biotransformation and biotherapy. The detoxification efficiency, characteristics, mechanisms and limitations of different strategies were discussed in detail. Computer-aided design will bring a new research paradigm for more efficient discovery of biodetoxifier. Integrating different detoxification approaches assisted with computational tools will become a promising research direction in the future, which will help to maximize the detoxification effect, or provide precise detoxification programs for the coexistence of various toxins at different levels in actual production. In addition, technical and regulatory issues in practical application were also discussed. These findings contribute to the exploration of efficient, applicable and sustainable methods for trichothecenes detoxification, ensuring the safety of food and feed to reduce the deleterious effects of trichothecenes on humans and animals.


Assuntos
Fusarium , Micotoxinas , Tricotecenos , Animais , Humanos , Alimentos
12.
J Agric Food Chem ; 72(14): 8214-8224, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557103

RESUMO

The emerging mycotoxins enniatins (ENNs) and the traditional mycotoxin deoxynivalenol (DON) often co-contaminate various grain raw materials and foods. While the liver is their common target organ, the mechanism of their combined effect remains unclear. In this study, the combined cytotoxic effects of four ENNs (ENA, ENA1, ENB, and ENB1) with DON and their mechanisms were investigated using the HepG2 cell line. Additionally, a population exposure risk assessment of these mycotoxins was performed by using in vitro experiments and computer simulations. The results showed that only ENA at 1/4 IC50 and ENB1 at 1/8 IC50 coexposed with DON showed an additive effect, while ENB showed the strongest antagonism at IC50 (CI = 3.890). Co-incubation of ENNs regulated the signaling molecule levels which were disrupted by DON. Transcriptome analysis showed that ENB (IC50) up-regulated the PI3K/Akt/FoxO signaling pathway and inhibited the expression of apoptotic genes (Bax, P53, Caspase 3, etc.) via phosphorylation of FoxO, thereby reducing the cytotoxic effects caused by DON. Both types of mycotoxins posed serious health risks, and the cumulative risk of coexposure was particularly important for emerging mycotoxins.


Assuntos
Depsipeptídeos , Micotoxinas , Fosfatidilinositol 3-Quinases , Tricotecenos , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células Hep G2 , Micotoxinas/toxicidade , Micotoxinas/análise
13.
Fungal Biol ; 128(2): 1684-1690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575241

RESUMO

This study aimed to investigate the effects of ferulic acid (FA), a natural phenolic phytochemical, in combination with light irradiation at three wavelengths (365, 385 and 405 nm) on the concentration and toxicity of deoxynivalenol (DON), a mycotoxin produced by Fusarium graminearum. Moreover, this study examined the influence of the combination treatment on DON production in the cultured fungus. FA activated by light at a peak wavelength of 365 nm exhibited the most effective decrease in DON concentration of the tested wavelengths; a residual DON ratio of 0.23 at 24 h exposure was observed, compared with the initial concentration. The reduction in DON using 365-nm light was dependent on the concentration of FA, with a good correlation (r2 = 0.979) between the rate constants of DON decrease and FA concentration, which was confirmed by a pseudo-first-order kinetics analysis of the photoreaction with different FA concentrations (50-400 mg/L) for 3 h. The viability of HepG2 cells increased by 56.7% following in vitro treatment with a mixture containing the photoproducts obtained after treatment with 20 mg/L DON and 200 mg/L FA under 365-nm irradiation for 6 h. These results suggested that the photoreaction of FA under 365-nm irradiation induces the detoxification of DON through degradation or modification of DON. The antifungal effects of the combination (FA and 365-nm light) on F. graminearum were investigated. Conidia treated with the combination did not show additive or synergistic inhibition of fungal biomass and DON production in 7-day cultivated fungal samples compared with samples after single treatment. However, successive treatment, composed of 90 min irradiation at 365 nm and then treatment with 200 mg/L FA for 90 min in the dark, suppressed fungal growth and DON yield to 70% and 25% of the untreated sample level, respectively. This photo-technology involving the two treatment methods of 365-nm irradiation and FA addition as a food-grade phenolic acid in combination or successively, can aid in developing alternative approaches to eliminate fungal contaminants in the fields of environmental water and agriculture. However, further research is required to explore the underlying mechanisms of DON decontamination and its biosynthesis in F. graminearum.


Assuntos
Ácidos Cumáricos , Fusarium , Micotoxinas , Tricotecenos , Tricotecenos/metabolismo , Micotoxinas/metabolismo , Doenças das Plantas/microbiologia
14.
Cell Host Microbe ; 32(5): 710-726.e10, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38657607

RESUMO

Fusarium head blight (FHB) is a devastating wheat disease. Fhb1, the most widely applied genetic locus for FHB resistance, is conferred by TaHRC of an unknown mode of action. Here, we show that TaHRC alleles distinctly drive liquid-liquid phase separation (LLPS) within a proteinaceous complex, determining FHB susceptibility or resistance. TaHRC-S (susceptible) exhibits stronger LLPS ability than TaHRC-R (resistant), and this distinction is further intensified by fungal mycotoxin deoxynivalenol, leading to opposing FHB symptoms. TaHRC recruits a protein class with intrinsic LLPS potentials, referred to as an "HRC-containing hub." TaHRC-S drives condensation of hub components, while TaHRC-R comparatively suppresses hub condensate formation. The function of TaSR45a splicing factor, a hub member, depends on TaHRC-driven condensate state, which in turn differentially directs alternative splicing, switching between susceptibility and resistance to wheat FHB. These findings reveal a mechanism for FHB spread within a spike and shed light on the roles of complex condensates in controlling plant disease.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Proteínas de Plantas , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/metabolismo , Fusarium/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tricotecenos/metabolismo , Alelos , Processamento Alternativo
15.
J Agric Food Chem ; 72(18): 10616-10626, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656193

RESUMO

Deoxynivalenol (DON) is a common food contaminant that can impair male reproductive function. This study investigated the effects and mechanisms of DON exposure on progenitor Leydig cell (PLC) development in prepubertal male rats. Rats were orally administrated DON (0-4 mg/kg) from postnatal days 21-28. DON increased PLC proliferation but inhibited PLC maturation and function, including reducing testosterone levels and downregulating biomarkers like HSD11B1 and INSL3 at ≥2 mg/kg. DON also stimulated mitochondrial fission via upregulating DRP1 and FIS1 protein levels and increased oxidative stress by reducing antioxidant capacity (including NRF2, SOD1, SOD2, and CAT) in PLCs in vivo. In vitro, DON (2-4 µM) inhibited PLC androgen biosynthesis, increased reactive oxygen species production and protein levels of DRP1, FIS1, MFF, and pAMPK, decreased mitochondrial membrane potential and MFN1 protein levels, and caused mitochondrial fragmentation. The mitochondrial fission inhibitor mdivi-1 attenuated DON-induced impairments in PLCs. DON inhibited PLC steroidogenesis, increased oxidative stress, perturbed mitochondrial homeostasis, and impaired maturation. In conclusion, DON disrupts PLC development in prepubertal rats by stimulating mitochondrial fission.


Assuntos
Células Intersticiais do Testículo , Mitocôndrias , Dinâmica Mitocondrial , Estresse Oxidativo , Ratos Sprague-Dawley , Tricotecenos , Animais , Masculino , Dinâmica Mitocondrial/efeitos dos fármacos , Ratos , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/citologia , Tricotecenos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testosterona/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/citologia , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos
16.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38619320

RESUMO

The present study aimed to investigate the effects of deoxynivalenol (DON) stimulation on inflammatory injury and the expression of the glucose transporters sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter protein 2 (GLU2) in porcine small intestinal epithelial cells (IPEC-J2). Additionally, the study aimed to provide initial insights into the connection between the expression of glucose transporters and the inflammatory injury of IPEC-J2 cells. DON concentration and DON treatment time were determined using the CCK­8 assay. Accordingly, 1.0 µg/mL DON and treatment for 24 h were chosen for subsequent experiments. Then IPEC-J2 cells were treated without DON (CON, N = 6) or with 1 µg/mL DON (DON, N = 6). Lactate dehydrogenase (LDH) content, apoptosis rate, and proinflammatory cytokines including interleukin (IL)-1ß, Il-6, and tumor necrosis factor α (TNF-α) were measured. Additionally, the expression of AMP-activated protein kinase α1 (AMPK-α1), the content of glucose, intestinal alkaline phosphatase (AKP), and sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) activity, and the expression of SGLT1 and GLU2 of IPEC-J2 cells were also analyzed. The results showed that DON exposure significantly increased LDH release and apoptosis rate of IPEC-J2 cells. Stimulation with DON resulted in significant cellular inflammatory damage, as evidenced by a significant increase in proinflammatory cytokines (IL-1ß, IL-6, and TNF-α). Additionally, DON caused damage to the glucose absorption capacity of IPEC-J2 cells, indicated by decreased levels of glucose content, AKP activity, Na+/K+-ATPase activity, AMPK-α1 protein expression, and SGLT1 expression. Correlation analysis revealed that glucose absorption capacity was negatively correlated with cell inflammatory cytokines. Based on the findings of this study, it can be preliminarily concluded that the cell inflammatory damage caused by DON may be associated with decreased glucose absorption.


Glucose is one of the most basic nutrients necessary to sustain animal life and plays a crucial role in animal body composition and energy metabolism. Previous studies suggested a link between glucose absorption and inflammatory injury. In the present study, deoxynivalenol (DON) stimulation caused severe inflammatory injury and reduced the glucose absorption capacity of IPEC-J2 cells. Pearson's correlation analysis revealed a negative correlation between glucose absorption capacity and cell inflammatory cytokines. Ultimately, it can be speculated that the cellular inflammatory response triggered by DON may be related to the altered expression of glucose transporters.


Assuntos
Células Epiteliais , Glucose , Intestino Delgado , Transportador 1 de Glucose-Sódio , Tricotecenos , Animais , Tricotecenos/toxicidade , Suínos , Glucose/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Linhagem Celular , Intestino Delgado/efeitos dos fármacos , Inflamação/induzido quimicamente , Citocinas/metabolismo , Citocinas/genética , Transporte Biológico/efeitos dos fármacos , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 2/genética , Apoptose/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo
17.
Food Chem Toxicol ; 188: 114630, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604577

RESUMO

In this study, we conducted a systematic assessment of the effectsof deoxynivalenol (DON) and T-2 mycotoxins (T-2) on the developmental processes and structural integrity of murine femurs, considering both the isolated and synergistic effects of these toxins. To this end, we divided 72 male mice into nine groups, each subjected to varying dosages of T-2, DON, or their combinations. Over a four-week experimental period, meticulous monitoring was undertaken regarding the mice's body weight, biochemical markers of bone formation and resorption, and the activity of relevant cells. To comprehensively evaluate alterations in bone structure, we employed biomechanical analysis, micro-computed tomography (micro-CT), and transmission electron microscopy.Our findings unveiled a significant revelation: the mice exhibited a dose-dependent decrease in body weight upon exposure to individual mycotoxins, while the combined use of these toxins manifested an atypical antagonistic effect. Furthermore, we observed variations in the levels of calcium, phosphorus, and vitamin D, as well as adjustments in the activities of osteoblasts and osteoclasts, all intricately linked to the dosage and ratio of the toxins. Alterations in biomechanical properties were also noted to correlate with the dosage and combination of toxins. Analyses via micro-CT and transmission electron microscopy further corroborated the substantial impact of toxin dosage and combinations on both cortical and trabecular bone structures.In summation, our research unequivocally demonstrates the dose- and ratio-dependent detrimental effects of DON and T-2 mycotoxins on the growth and structural integrity of murine femurs. These insights accentuate the importance of a profound understanding of the potential risks these toxins pose to bone health, offering pivotal guidance for future toxicological research and public health preventative strategies.


Assuntos
Fêmur , Toxina T-2 , Tricotecenos , Microtomografia por Raio-X , Animais , Tricotecenos/toxicidade , Masculino , Fêmur/efeitos dos fármacos , Camundongos , Toxina T-2/toxicidade , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos
18.
Food Chem Toxicol ; 188: 114633, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608924

RESUMO

The cytotoxic mycotoxin deoxynivalenol (DON) reportedly has adverse effects on oocyte maturation and embryonic development in pigs. Recently, the interplay between cell apoptosis and endoplasmic reticulum (ER) stress has garnered increasing attention in embryogenesis. However, the involvement of the inositol-requiring enzyme 1 (IRE1)/c-jun N-terminal kinase (JNK)/C/EBP homologous protein (CHOP) pathways of unfolded protein response (UPR) signaling in DON-induced apoptosis in porcine embryos remains unknown. In this study, we revealed that exposure to DON (0.25 µM) substantially decreased cell viability until the blastocyst stage in porcine embryos, concomitant with initiation of cell apoptosis through the IRE1/JNK/CHOP pathways in response to ER stress. Quantitative PCR confirmed that UPR signaling-related transcription factors were upregulated in DON-treated porcine blastocysts. Western blot analysis showed that IRE1/JNK/CHOP signaling was activated in DON-exposed porcine embryos, indicating that ER stress-associated apoptosis was instigated. The ER stress inhibitor tauroursodeoxycholic acid protected against DON-induced ER stress in porcine embryos, indicating that the toxic effects of DON on early developmental competence of porcine embryos can be prevented. In conclusion, DON exposure impairs the developmental ability of porcine embryos by inducing ER stress-mediated apoptosis via IRE1/JNK/CHOP signaling.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Fator de Transcrição CHOP , Tricotecenos , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Suínos , Tricotecenos/toxicidade , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Feminino
19.
Free Radic Biol Med ; 219: 215-230, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636715

RESUMO

Selenium (Se) is indispensable in alleviating various types of intestinal injuries. Here, we thoroughly investigated the protective effect of Se on the regulation of the epithelial cell-M2 macrophages pathway in deoxynivalenol (DON)-induced intestinal damage. In the present study, Se has positive impacts on gut health by improving gut barrier function and reducing the levels of serum DON in vivo. Furthermore, our study revealed that Se supplementation increased the abundances of GPX4, p-PI3K, and AKT, decreased the levels of 4-HNE and inhibited ferroptosis. Moreover, when mice were treated with DON and Fer-1(ferroptosis inhibitor), ferroptosis was suppressed and PI3K/AKT pathway was activated. These results indicated that GPX4-PI3K/AKT-ferroptosis was a predominant pathway in DON-induced intestinal inflammation. Interestingly, we discovered that both the number of M2 anti-inflammatory macrophages and the levels of CSF-1 decreased while the pro-inflammatory cytokine IL-6 increased in the intestine and MODE-K cells supernatant. Therefore, Se supplementation activated the CSF-1-M2 macrophages axis, resulting in a decrease in IL-6 expression and an enhancement of the intestinal anti-inflammatory capacity. This study provides novel insights into how intestinal epithelial cells regulate the CSF-1-M2 macrophage pathway, which is essential in maintaining intestinal homeostasis confer to environmental hazardous stimuli.


Assuntos
Células Epiteliais , Mucosa Intestinal , Macrófagos , Selênio , Tricotecenos , Animais , Tricotecenos/toxicidade , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Selênio/farmacologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Ativação de Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo
20.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 634-644, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38511207

RESUMO

The deoxynivalenol (DON)-contaminated feeds can impair chicken gut barrier function, disturb the balance of the intestinal microbiota, decrease chicken growth performance and cause major economic loss. With the aim of investigating the ameliorating effects of baicalin on broiler intestinal barrier damage and gut microbiota dysbiosis induced by DON, a total of 150 Arbor Acres broilers are used in the present study. The morphological damage to the duodenum, jejunum, and ileum caused by DON is reversed by treatment with different doses of baicalin, and the expression of tight junction proteins (ZO-1, claudin-1, and occludin) is also significantly increased in the baicalin-treated groups. Moreover, the disturbance of the intestinal microbiota caused by DON-contaminated feed is altered by baicalin treatment. In particular, compared with those in the DON group, the relative abundances of Lactobacillus, Lachnoclostridium, Ruminiclostridium and other beneficial microbes in the baicalin-treated groups are significantly greater. However, the percentage of unclassified_f__Lachnospiraceae in the baicalin-treated groups is significantly decreased in the DON group. Overall, the current results demonstrate that different doses of baicalin can improve broiler intestinal barrier function and the ameliorating effects on broiler intestinal barrier damage may be related to modulations of the intestinal microbiota.


Assuntos
Flavonoides , Microbioma Gastrointestinal , Tricotecenos , Animais , Galinhas , Tricotecenos/metabolismo , Tricotecenos/farmacologia , Jejuno/metabolismo , Ração Animal/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...